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Abstract. Here for Hamiltonian systems we describe two of five methods
of Celestial Mechanics. Namely: method of normal forms, allowing to study
regular perturbations near a stationary solution, near a periodic solution, and
method of truncated systems, found with a help of the Newton polyhedrons,
allowing to study singular perturbations. Other three methods will be in the
full presentation.

1. Normal forms
Here and below vectors in Rn or Cn are denoted by boldface font: x = (x1, . . . , xn).

Let us consider the Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξj
, j = 1, . . . , n (1)

with n degrees of freedom in a vicinity of the stationary solution

ξ = η = 0. (2)

If the Hamiltonian function γ(ξ,η) is analytic in the point (2), then it is expanded
into the power series

γ(ξ,η) =
∑

γpqξ
pηq , (3)

where p,q ∈ Zn, p,q ≥ 0, ξp = ξp1

1 · · · ξpn
n . Here γpq are constant coefficients.

As the point (2) is stationary, than the expansion (3) begins from quadratic
terms. They correspond to the linear part of the system (1). Eigenvalues of its
matrix are decomposed in pairs:

λj+n = −λj , j = 1, . . . , n .

Let λ = (λ1, . . . , λn). The canonical changes of coordinates

ξ,η −→ x,y (4)

preserve the Hamiltonian structure of the system.
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Theorem 1 ([1, §12]). There exists a formal canonical transformation (4), bring-
ing Hamiltonian (3) to the normal form

g(x,y) =
∑

gpqxpyq (5)

contains only resonant terms with scalar product

〈p− q,λ〉 = 0.

If λ 6= 0, then the system corresponding to the normal form (5) is equiva-
lent to a system with smaller number of degrees of freedom and with additional
parameters. The normalizing transformation (4) conserves small parameters and
linear automorphisms of the initial system (1)

ξ,η −→ ξ̃, η̃, , t→ t̃ .

For the real initial system (1), the coefficients gpq of the complex normal
form (5) satisfy to special properties of reality and after a standard canonical
linear change of coordinates x,y → X,Y Hamiltonian (5) transforms in a real
one [2, Ch. I]. There are several methods of computation of coefficients gpq of the
normal form (5). The most simple method was described in the book [3]. Normal
forms near a periodic solution, near an invariant torus and near family of them
see in [2, Chs. II, VII, VIII], [4, Part II], [5], [6]. Normal form is useful in study
stability, bifurcations and asymptotic behavior of solutions.

2. Truncated Hamiltonian functions

Let x, y and µ = (µ1, . . . , µs) be canonical variables and small parameters respec-
tively. Let a Hamiltonian function be

h(x,y,µ) =
∑

hpqrx
pyqµr (6)

where hpqr are constant coefficients and r ∈ Zs, r ≥ 0. To each term of sum (6)
we put in correspondence its vectorial power exponent Q = (p,q, r) ∈ R2n+s. Set
S of all points Q with hQ 6= 0 in sum (6) is called as support S = S(h) of the
sum (6). The convex hull Γ(S) = Γ(h) of the support S is called as the Newton
polyhedron of the sum (6). Its boundary ∂Γ(h) consists of vertices Γ

(0)
j , edges Γ

(1)
j

and faces Γ
(d)
j of dimensions d: 1 < d ≤ 2n+ s− 1. Intersection S

⋂
Γ
(d)
j = S

(d)
j is

the boundary subset of set S. To each generalized face Γ
(d)
j (including vertices and

edges) there correspond:

• normal cone U
(d)
j in space R2n+s

∗ , which is dual to space R2n+s;
• truncated sum

ĥ
(d)
j =

∑
hpqrx

pyqµr over Q = (p,q, r) ∈ S
(d)
j .
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The truncated sum is the first approximation to the sum (6), when

(log |xj |, log |yj |, log |µk|)→∞, j = 1, . . . , n, k = 1, . . . , s,

near the normal cone U
(d)
j .

So we can describe the approximate problems by truncated Hamiltonian func-
tions. Example see below in Section 3.

3. Restricted 3-body problem
Let the two bodies P1 and P2 with masses 1 − µ and µ respectively turn in
circular orbits around their common mass center with the period T . The plane
circular restricted three-body problem consists in the study of the plane motion of
the body P3 of infinitesimal mass under the influence of the Newton gravitation
of bodies P1 and P2. In the rotating (synodical) standardized coordinate system
the problem is described by the Hamiltonian system with two degrees of freedom
and with one parameter µ [2]. The Hamiltonian function has the form

h
def
=

1

2

(
y21 + y22

)
+ x2y1 − x1y2 −

1− µ√
x21 + x22

− µ√
(x1 − 1)2 + x22

+ µx1. (7)

Here the body P1 = {X,Y : x1 = x2 = 0} and the body P2 = {X,Y : x1 =
1, x2 = 0}, where X = (x1, x2), Y = (y1, y2). We consider the small values of
the mass ratio µ ≥ 0. When µ = 0 the problem turns into the two-body problem
for P1 and P3. But here the points corresponding to collisions of the bodies P2

and P3 must be excluded from the phase space. The points of collisions split in
parts solutions to the two-body problem for P1 and P3. For small µ > 0 there is
a singular perturbation of the case µ = 0 near the body P2. In order to find all
the first approximations to the restricted three-body problem, it is necessary to
introduce the local coordinates near the body P2

ξ = x1 − 1, ξ2 = x2, η1 = y1, η2 = y2 − 1

and to expand the Hamiltonian function in these coordinates. After the expansion
of 1/

√
(ξ1 + 1)2 + ξ22 in the Maclaurin series, the Hamiltonian function (7) takes

the form

h+
3

2
− 2µ

def
=

1

2
(η21 + η22) + ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22+

+f
(
ξ1, ξ

2
2

)
+ µ

{
ξ21 −

1

2
ξ22 −

1√
ξ21 + ξ22

− f
(
ξ1, ξ

2
2

)}
,

(8)

where f is the convergent power series, where the terms of order less then three
are absent. Let for each term of sum (8) we put

p = ord ξ1 + ord ξ2, q = ord η1 + ord η2, r = ordµ.

Then support S of the expansion (8) consists of the points

(0, 2, 0), (1, 1, 0), (2, 0, 0), (k, 0, 0), (2, 0, 1), (−1, 0, 1), (k, 0, 1),
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where k = 3, 4, 5, . . . The convex hull of the set S is the polyhedron Γ ⊂ R3. The
surface ∂Γ of the polyhedron Γ consists of faces Γ

(2)
j , edges Γ

(1)
j and vertices Γ

(0)
j .

To each of the elements Γ
(d)
j there corresponds the truncated Hamiltonian ĥ

(d)
j ,

that is the sum of those terms of Series (8), the points Q = (p, q, r) of which belong
to Γ

(d)
j . Fig. 1 shows the polyhedron Γ, which is the semi-infinite trihedral prism

with an oblique base. It has four faces and six edges. Let us consider them.

Figure 1. The polyhedron Γ for the Hamiltonian function (8) in
coordinates p, q, r.

The face Γ
(2)
1 , which is the oblique base of the prism Γ, contains vertices

(0, 2, 0), (2, 0, 0), (−1, 0, 1) and the point (1, 1, 0) ∈ S To the face there corre-
sponds the truncated Hamiltonian function

ĥ
(2)
1 =

1

2

(
η21 + η22

)
+ ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22 −

µ√
ξ21 + ξ22

. (9)

It describes the Hill problem [7], which is a non-integrable one. The canonical
power transformation

ξ̃i = ξiµ
−1/3, η̃i = ηiµ

−1/3, i = 1, 2, (10)

reduces the Hamiltonian (9) to the Hamiltonian of the form (9), where ξi, ηi, µ
must be substituted by ξ̃i, η̃1, 1 respectively.

The face Γ
(2)
2 contains points (0, 2, 0), (1, 1, 0), (2, 0, 0) and (k, 0, 0) ⊂ S.

To the face there corresponds the truncated Hamiltonian function ĥ
(2)
2 , which is

obtained from the function h when µ = 0. It describes the two-body problem for
P1 and P3, which is an integrable one.

The edge Γ
(1)
1 includes points (0, 2, 0) and (−1, 0, 1) ⊂ S. The corresponding

truncated Hamiltonian function is

ĥ
(1)
1 =

1

2
(η21 + η22)−

µ√
ξ21 + ξ22

. (11)
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It describes the two-body problem for P2 and P3. The power transformation (10)
transforms Hamiltonian (11) into the Hamiltonian function of the form (11), where
ξi, ηi, µ must be substituted by ξ̃i, η̃1, 1 respectively.

The edge Γ
(1)
2 includes points (2, 2, 0), (1, 1, 0), (0, 2, 0) ⊂ S. To it there cor-

responds the truncated Hamiltonian function (9) with µ = 0. It describes the
intermediate problem (between the Hill problem and the two-body problem for
P1 and P3), which is an integrable one. This first approximation was introduced
by Hénon [8].
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